

From Sudbury to Southbury:
Evergreen SQL Bootcamp

Dan Scott
Coffee|Code Consulting
February 18/19, 2010

http://creativecommons.org/licenses/by-sa/2.5/ca

Agenda

● Day 1:
– Introduction to SQL databases

– Basic SELECT statements

● Day 2:
– Advanced SELECT statements

– Inserting, updating, and deleting data

– Specific Bibliomation reports

– Using the Evergreen reporter interface

Daily agenda

● 9:30 – 11:30: Dan talks and demonstrates
● 11:30 – 12:00: You practice
● 12:00 – 12:30ish: We all eat and make merry
● 12:30ish – 3:00: Dan talks and demonstrates
● 3:00 – 4:00: You practice
● 4:00 - ??: We all go home, eat, and make

merry

Introducing SQL databases

● SQL: Structured Query Language
● Tables
● Rows (aka tuples) and columns (aka fields)
● Schemas
● Data types
● Constraints
● What more could you possibly want?

Tables, rows, and columns

● A database contains one or more tables, each
of which has a specific name

– actor.usr, action.circulation, asset.copy

● Tables hold rows of data that conform to a
specific definition for that table; each row has
one or more columns with specific data types

– id INTEGER, first_given_name TEXT

Tables - rows

Row 1

Row 2

Row 1

Row 3

Row 4

Note that rows in tables have no implicit order; the 1, 2, 3, 4 is just for
demonstration purposes.

Tables - columns
id INTEGER code TEXT name TEXTid INTEGER created DATE

Schemas

● The overall design of a database – the way
that data is split between different tables – is
called the database schema

● Tables are logically grouped together in
namespaces that are also, confusingly, called
schemas

– actor schema: org_unit and usr tables

– asset schema: call_number and copy tables

● A fully-qualified table name includes the
schema name: actor.org_unit

Schemas – table groupings

actor

card
org_unit
stat_cat

usr
usr_address

...

asset

call_number
copy

copy_location
stat_cat

uri
...

action

circulation
hold_request

hold_transit_copy
hold_request_note

survey
...

actor

card
org_unit
stat_cat

usr
usr_address

...

config

bib_source
billing_type

circ_modifier
copy_status

identification_type
...

Data types used in Evergreen
Type Description Limits

INTEGER Medium integer -2147483648 to +2147483647

BIGINT Large integer -9223372036854775808 to
9223372036854775807

SERIAL Sequential integer 1 to 2147483647

BIGSERIAL Large sequential
integer

1 to 9223372036854775807

TEXT Variable length
character data

Unlimited

BOOL Boolean TRUE or FALSE

TIMESTAMP WITH
TIME ZONE

Timestamp 4713 BC to 294276 AD

TIME Time Expressed in HH:MM:SS

NUMERIC Decimal Mostly used for money values in
Evergreen

Constraints

● Column constraints ensure that the values in a
given table make sense for the object being
modelled

– Data types are a kind of constraint

– NOT NULL constraints require any value

– Primary key uniquely identifies a row

– Foreign key must have a corresponding value
in another table

– Check constraints place arbitrary requirements
on the value (e.g. ZIP code)

Simple relational example

Let's explore the Evergreen schema

The SELECT statement

● The SELECT statement selects one or more
column values from a set of data

● SQL 101:

● * means “select all column values from the
set”

● actor.usr is the schema-qualified table name
that forms the set of data

SELECT * FROM actor.usr;

Selecting specific columns

● Name the columns you want, separated by
commas

● If the column name is unambiguous, you can
drop the schema & table qualifiers:

SELECT actor.usr.first_given_name, actor.usr.family_name
 FROM actor.usr;

SELECT first_given_name, family_name
 FROM actor.usr;

Sorting rows: ORDER BY

● If you want the rows returned in a particular
order, use the ORDER BY clause to identify
the columns to sort the results by in ascending
or descending order

● You can also use the column number instead
of the column name; useful when the column
has no name!

SELECT first_given_name, family_name
 FROM actor.usr
 ORDER BY family_name, first_given_name DESC;

Filtering rows: WHERE clause

● Specify one or more conditions in the WHERE
clause to exclude rows from the results

● Conditions can be connected with AND, OR,
and NOT, and parentheses group conditions

SELECT first_given_name, family_name
 FROM actor.usr
 WHERE family_name = 'System Account';

SELECT first_given_name, family_name
 FROM actor.usr
 WHERE family_name = 'System Account'
 AND first_given_name = 'Administrator';

WHERE clause operators

● The WHERE clause supports a number of
comparison operators:

– x = y (x is equal to y)

– x != y (x is not equal to y)

– x < y (x is less than y)

– x > y (x is greater than y)

– x IN (a, b, c) (x matches one of a, b, or c)

WHERE clause operators (2)

– x BETWEEN a AND b (syntactic sugar for x >=
a AND x <= b)

– x LIKE 'a%x_z' (text pattern match)

– x ILIKE 'a%x_z' (case-insensitive text pattern
match)

● % wildcard matches zero or more characters
● _ - wildcard matches exactly one character

SELECT * FROM actor.usr WHERE first_given_name = 'Admin%istrator';
– 1 row
SELECT * FROM actor.usr WHERE first_given_name = 'Admin_istrator';
– 0 rows

NULL values

● A NULL value is not an empty string, or a 0 – it
is a non-value; use the IS NULL or IS NOT
NULL comparison operators

● NULL values will throw curves at you!

SELECT first_given_name, family_name
 FROM actor.usr
 WHERE second_given_name IS NULL;

Text delimiter: '

● TEXT values are delimited by single quotes (')
● To use a single quote inside a TEXT value,

escape the single quote by prepending
another single quote to it:

SELECT first_given_name, family_name
 FROM actor.usr
 WHERE family_name IS 'L''estat';

Grouping results: GROUP BY

● The GROUP BY clause returns a unique set
of results for the grouped columns:
SELECT ou_type
 FROM actor.org_unit
 ORDER BY ou_type;
 ou_type

 1
 2
 2
 3
 3
 3
 3
 4
 5
(9 rows)

SELECT ou_type,
COUNT(ou_type)
 FROM actor.org_unit
 GROUP BY ou_type
 ORDER BY ou_type;

 ou_type | count
---------+-------
 1 | 1
 2 | 2
 3 | 4
 4 | 1
 5 | 1
(5 rows)

Filtering grouped rows: HAVING

● While the WHERE clause filters individual
rows, the HAVING clause filters rows based
on an aggregate function:

SELECT ou_type, COUNT(ou_type)
 FROM actor.org_unit
 GROUP BY ou_type
 HAVING COUNT(ou_type) > 1;

 ou_type | count
---------+-------
 3 | 4
 2 | 2
(2 rows)

Eliminating duplicates: DISTINCT

● Use the DISTINCT operator to eliminate
duplicate rows from your results:
SELECT DISTINCT ou_type
 FROM actor.org_unit
 ORDER BY ou_type;

 ou_type

 1
 2
 3
 4
 5
(5 rows)

Eliminating: DISTINCT ON ()

● The DISTINCT ON () operator eliminates
duplicate sets of one or more column values;
must match ORDER BY column order

SELECT DISTINCT ON (ou_type) name
 FROM actor.org_unit
 ORDER BY ou_type;

 name

 Example Consortium
 Example System 1
 Example Branch 1
 Example Sub-library 1
 Example Bookmobile 1
(5 rows)

● The LIMIT clause specifies the maximum
number of rows to return from the complete
result set

● The OFFSET clause specifies how far to
advance in the result set before returning the
first row

● This example would return 5 or fewer rows,
starting at the 10th row of the result set

Paging: LIMIT / OFFSET

SELECT * FROM actor.usr LIMIT 5 OFFSET 10;

Agenda, Day 2

● Exercises (simple SELECT queries)
● Advanced SELECT queries
● Inserting, updating, deleting data
● Specific Bibliomation reports

Exercises

1) List all of the values for the first ten users in
the system.

2) List the first name and last name of the 10th
through 20th users, ordered by last name,
whose home library is set to Beacon Falls.

3) List each library with a count of the number of
users per library who have not been deleted.

4) List the email address and user name of all
active users with a last name of “Scott” or
“Smith”.

JOINed at the hip

● You need to master joins to be able to work
effectively with data from multiple tables. A join
always brings two sets of data together

● If you're joining 10 tables, you're still working
with two sets of data at a time; the sets on the
left-hand side are just getting bigger and
bigger each time.

● The INNER JOIN is the easiest join to master;
it returns rows only if both the left-hand table
and right-hand table match the join condition.

INNER JOIN

id usrname

1 Frank

2 Carol

3 Bob

usr title value

2 Hey! This is a note

4 Ho ho ho Loves XMAS

10 Curses Foul mouth

20 Buffy BTVS

SELECT au.usrname, aun.title
 FROM actor.usr au INNER JOIN actor.usr_note aun
 ON au.id = aun.usr;

 usrname title
---------+-------
Carol Hey!
(1 rows)

INNER JOIN practice

1) List the user name, email address, and home
library name for the first 10 users in order of
last name (Z to A)

2) List the record ID, call number, owning library
by name, barcode, circulation library by name,
title, and author for the first 10 records in the
system. Ensure none of the records, call
numbers, or barcodes have been deleted.

OUTER JOIN

● An outer join returns NULL values for all
columns in rows that do not match the join
condition

● There are three kinds of outer join:
– The left outer join returns all rows from the left-

hand table

– The right outer join returns all rows from the
right-hand table

– The full outer join returns all rows from the left-
hand table and the right-hand table

OUTER JOIN practice

● List the user name, family name, and any user
notes for all users in the system whether or
not they have user notes attached to their
account (first 100 results only).

Some handy functions

● string1 || string2 - || concatenates two strings
together; if one string is NULL, then a NULL is
returned instead

● coalesce(value 1, value2) – returns the first
non-NULL value

● trim() - removes spaces by default from the
start and end of a string

● upper() - changes a string to upper case
● lower() - changes a string to lower case
●

Set operators

● UNION – adds the set of rows from the right-
hand table to the left-hand table

● INTERSECT – returns the rows that exist in
both the left-hand and right-hand tables

● EXCEPT – returns the rows from the left-hand
table that do not exist in the right-hand table

INSERT statements

● Basic INSERT statement
– INSERT INTO table (column, column, …)

VALUES (value, value, ...);

● You can also insert one or more rows via a
SELECT statement:

– INSERT INTO table (column, column, …)
SELECT column, column, … FROM table2
…

● The INSERT-via-SELECT approach is really
useful for data loading

DELETE statements

● DELETE FROM table WHERE condition;

● Warning: if you fail to give a condition, the
DELETE statement will happily delete all rows
from the table

● Delete operations are restricted by relational
constraints

● In Evergreen, a delete operation often sets the
deleted column to true

UPDATE statement

● UPDATE table
 SET column = value, column = value, ...
 WHERE condition;

● The UPDATE statement is an odd duck
because it almost forces you to rely on sub-
selects instead of joins

● Practice: Begin a transaction; then set all
middle names in the user table to NULL where
they are currently an empty string. Then
rollback the transaction.

And now... to walk through the Bibliomation
reports

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

