
PHP Exercises

Deep Dive with Apache Derby: Perl, PHP, and Python

OSCON

August 2, 2005

Dan Scott

dan.scott@acm.org / dan.scott@ca.ibm.com

Objectives

Build a Web application using PHP to access the Apache Derby database.

• Introduce the PDO_ODBC driver in PHP 5.x

• Set up PHP 5 with the PDO_ODBC extension compiled with Apache Derby support

• Display data from the database in a Web page

• Insert data into the database

Quick facts

Created by Rasmus Lerdorf in mid 1990's as an HTML template language, PHP's ease of
extensibility and close connection to databases launched its popularity skywards. The release of
PHP 5 in 2004 introduced "real" object-oriented support and focused firmly on integrating XML
and Web Service support into the core of the language.

1. Introducing PDO and PDO_ODBC

PHP's initial popularity was built largely on the tight linkage between PHP and MySQL; earlier
versions of PHP bundled the MySQL client libraries so that application deployment was
painless. However, in the run-up to the release of PHP 5, MySQL AB, the commercial enterprise
behind the MySQL database, changed the license of the client libraries to a license incompatible
with the PHP license. Until the introduction of the PHP Data Objects (PDO) extension and
database-specific drivers that implemented that interface in 2005, there was no common
interface for accessing databases in PHP.

PDO is an object oriented interface for database access designed to simplify the task of writing
portable PHP applications by providing a common set of database access objects and methods.

PDO_ODBC is a database driver written to the ODBC version 3 specification. This specification
is very similar to the Call Level Interface (CLI) library used to access Apache Derby databases
by the DB2 Application Development Client, and PDO_ODBC can be compiled directly against
the DB2 Application Development Client to enable you to directly access Apache Derby
databases without requiring the overhead of an ODBC Driver Manager.

Both PDO and PDO_ODBC were written by Wez Furlong, a developer responsible for core
features of PHP such as streams, infrastructure such as the PHP mailing lists, and overseeing the
PHP Extension Community Library (PECL) project.

2. Setting up PDO_ODBC support for Apache Derby

Prerequisites:

• Installed DB2 Application Development Client with application development support

• (Linux): Download PHP 5.1.x source from http://www.php.net/downloads.php

• (Linux): Application development tools such as apache-devel, gcc, autoconf, automake, bison,
flex, libxml2

Configuring and compiling

On Windows, PDO_ODBC support is compiled into the PHP 5.1.x binary, and is compiled
against the Windows ODBC Driver Manager.

On Linux, you can compile PDO_ODBC support against the DB2 Application Development
Client libraries by following these steps:

bash$ tar xzf php-5.1.tar.gz
bash$ cd php-5.1
bash$./configure --with-pdo-odbc=ibm-db2 --enable-cli --disable-cgi \
--with-apxs2=/usr/sbin/apxs
bash$ make && su -c 'make install'

This compiles PHP and installs its libraries in the /usr/local/lib/ directory, with the php
executable in /usr/local/bin/. The installer also tries to set up Apache with the
appropriate settings for PHP support.

Test that you have successfully installed PHP 5.1 by issuing the following command:

bash$ php -v
This should produce the following output:

PHP 5.1.0-dev (cli) (built: Jul 10 2005 20:58:07)
Copyright (c) 1997-2005 The PHP Group
Zend Engine v2.1.0-dev, Copyright (c) 1998-2004 Zend Technologies

Testing the installation

Test that you have successfully built PDO and PDO_ODBC support into the executable by
issuing the following command:

bash$ php -m

This should produce the output similar to the following:

[PHP Modules]
ctype
date
dom
iconv
libxml
pcre
PDO
PDO_ODBC
pdo_sqlite
posix
session
SimpleXML
SPL
SQLite
standard
tokenizer
xml

[Zend Modules]

3. Displaying data in a Web page

We'll start by creating a PHP script that simply creates an uncataloged connection to your
Apache Derby database and either confirms the connection, or explains why the connection
failed.

3a: Creating a function library

Create a new script named menu_lib.php containing the following code:

<?php
function menu_connect($database='MYDB', $hostname='localhost', $port=1527,
$user='lynn', $password='5tuff') {
 // Create the uncataloged connection string
 $DSN = "DRIVER={IBM DB2 ODBC DRIVER};
PROTOCOL=TCPIP;DATABASE=$database;HOSTNAME=$hostname;PORT=$port;UID=$user;PWD
=$password;";
 $dbh = new PDO("odbc:$DSN");
 return $dbh;
}
?>

3b: Connecting to the database through PDO

Create a new script named connect.php containing the following code:

<?php

// include the menu_lib.php file within this script
require('menu_lib.php');

// Create the connection, catching any exceptions
try {
 // connect with default parameter values
 $conn = menu_connect();
}
catch (PDOException $e) {
 print "Failed to connect: " . $e->getMessage();
 exit;
}

// Here is where we would do real work; just print connection status
print "Connection succeeded!";

// Clean up the connection
$conn = null;
?>

Test the script from the command line to ensure the connection succeeds:

bash$ php connect.php

We will use the connect.php script as the basis for the rest of our PHP scripts by fleshing it
out with real PHP code and HTML output.

4: Retrieving data from the database

To demonstrate how to retrieve information from an Apache Derby database using PDO, we will
search for menu items by preparing and executing an SQL statement (PDOStatement object)
with a parameter marker. The search string will be passed from an HTML form.

Create the following HTML search form named search.html:

<html>
<head><title>Search for a menu item</title></head>
<body>
<h1>Search for a menu item</h1>
<form action='search.php' method='POST'>
<label for='sinput'>Please enter the search string:</label>
<input type='text' name='search' id='sinput' size='30'/>

<input type='submit'/><input type='reset'/>
</form>

Create the following PHP script named search.php:

<?php

// include the menu_lib.php file within this script
require('menu_lib.php');

function menu_footer() {
 print '</body></html>';
}

// display the search form
readfile('search.html');

// assign the user-supplied input to a local variable
if (!isset($_POST['search'])) {
 print "Please supply a search string.";
 print menu_footer();
 exit;
}
// you can filter the input here
$search = preg_match('#^[^\W_]+$#', $_POST['search']);
if (!$search) {
 print "Your search string may only contain letters and numbers.";
 print menu_footer();
 exit;
}
else {
 $search = $_POST['search'];
}

// Create the connection, catching any exceptions
try {
 // connect with default parameter values
 $conn = menu_connect();
}
catch (PDOException $e) {
 print "Failed to connect: " . $e->getMessage();
 exit;

}

// Use a parameter marker to support variable input
$sql = 'SELECT name, description
 FROM menu.food
 WHERE menu.name LIKE ?';

// Prepare the statement
$stmt = $conn->prepare($sql);

// Execute the statement, passing in an array of input variables
$stmt->execute(array($search));

while ($row = $stmt->fetch()) {
 // Retrieve column by index number
 print "<p>Name: {$row[0]}\n";
 // Retrieve column by column name
 print "Description: {$row['DESCRIPTION']}</p>\n";
}

$stmt = null;
$conn = null;

print menu_footer();

?>

Copy the search.html and search.php files to your HTML document root, open
search.html in your Web browser, and try searching for some exact matches of menu items.

4a. Search for a substring

Alter the search.php script so that instead of searching for an exact string, it searches for the
substring in the menu item name. (Hint: the SQL wildcard character for multiple characters is
'%'.)

4b. Search for a case-insensitive substring

Alter the search.php script so that instead of matching the exact case of the string, it
performs a case-insensitive search. (Hints: the UPPER() and LOWER() SQL column functions
force values returned from the database to be either uppercase or lowercase, respectively; the
strtoupper() and strtolower() PHP functions force strings to be uppercase or
lowercase, respectively.)

4c. Display the last search string in the search text field

Alter the search.html page so that it displays the last search string entered by a user in the
search text field by default.

5. Inserting data into the database from form input

We can insert data into the database in the same way that we retrieved data: preparing and
executing an SQL statement through a PDOStatement. This time, we will demonstrate the use of
named parameters in the SQL statement.

5a. Create an HTML form for adding new menu items

Create a new HTML form named input.html consisting of three text fields: itemName,
itemDescription, and price.

5b. Create a PHP script that inserts the contents of the HTML form

Create a new PHP script that inserts the values submitted from the HTML form into the
database. Filter the input data to ensure that no tainted input values reach the database.

Here is the template SQL for the solution:

INSERT INTO menu.food(name, description) VALUES (:name, :description);
INSERT INTO menu.prices (id, price) VALUES (IDENTITY_VAL_LOCAL(), :price);

For named parameters in a PDOStatement object, PDO binds values associated with the
parameter names passed in an associative array. For example:

$stmt->execute(array(':name' => 'Big burger');

IDENTITY_VAL_LOCAL() returns the last IDENTITY value generated by an INSERT
statement on the same connection to Apache Derby.

5c. Ensuring that the INSERT statements are atomic

To prevent a situation where one of the INSERT statements succeeds, but the other statement
fails, you should use a database transaction. PDO starts every connection in auto-commit mode
by default, but you can begin a new transaction by calling the beginTransaction() method
on the PDO connection object. You then have the option of ending the transaction by explicitly
committing or rolling back the transaction by calling the commit() or rollBack()
methods on the PDO connection handle, respectively. This returns the database connection to
auto-commit mode.

If you begin a transaction, but do not commit the work before the script ends, PHP will
automatically roll back the transaction during request clean-up.

Example of a transaction in PDO

try {
 // Begin a transaction
 $conn->beginTransaction();

 // Execute the statement, passing in an array of input variables
 $stmt_food->execute(array(':name' => $name,
 ':description' => $description));

 // Execute the statement, passing in an array of input variables
 $stmt_price->execute(array(':price' => $price));
}
catch (PDOException $e) {
 // Uh-oh -- roll back the transaction
 $conn->rollBack();
 print menu_footer();
 exit();

}

// Commit the transaction
$conn->commit();

PHP Syntax Primer

Code blocks

A PHP section begins with <?php and ends with ?>. Any text before or after a PHP section will
be output exactly as is to the browser or command line.

Types

PHP is a loosely typed language that will happily interpret the values of variables in whatever
way is necessary to provide a reasonably valid comparison. For example, you can compare the
integer value 6 with the string value "7" to determine which value is greater.

Boolean

A simple TRUE or FALSE value, where FALSE == 0, null, false, empty arrays, or empty
strings.

Numeric

PHP supports signed integer and float (decimal) values. As PHP float values lack precision, most
PDO drivers return decimal values as strings.

Strings

Strings can be single-quoted, non-interpolated strings; double-quoted, interpolated strings; or
HEREDOC notation interpolated strings. For example:

<?php
$it = 'nothing';
$looks = "something from {$it}";
$single = 'This prints as $it $looks.';
$heredoc = <<<HEREDOC
 All of this whitespace is preserved, and HEREDOC
 notation supports interpolated strings, so you can
 get $looks if you try really hard.
HEREDOC;
?>

Arrays

Arrays are an extremely flexible data type that consist of a set of keys that map to PHP values. In
PHP, arrays enable you to access data by keys that are either integers or strings. By default, an
array is a zero-indexed structure that increments the key by one for every new item that is
pushed onto the array; however, you can explicitly assign keys when you populate the array.
You can also create arrays of arrays if you require more complex structures.

PDO returns rows as arrays that, by default, are indexed by both column number and name.

<?php
$array = new array();
$array[] = "item one";
$array[] = "item two";
$array[64] = "when I'm ";
$array['Beatles'] = "Rock 'n' Roll";

?>

Objects

PHP supports objects with inheritance and encapsulation and all kinds of complexity, but for the
purposes of this tutorial here's what you need to know to use PDO (an object-oriented interface):

Constructor

PHP objects use a constructor to create a new instance of a class. The constructor is invoked by
the new operator, and you are responsible for passing whatever arguments the constructor
requires to create the class. For example, the constructor syntax for a PDO object is:

<?php
$conn = new PDO($DSN, $username, $password, $driver_arguments);
?>

Method invocation

To invoke a dynamic method on an object, use the -> operator to bind the method name to the
object name. To invoke a static method on a class, use the :: operator. For example:

<?php
$stmt = $conn->prepare('SELECT name FROM menu.food');
$stmt->execute();
?>

Control structures

Code blocks in PHP are delimited by { } characters.

if, while, do

The if and while control structures test a particular condition and execute a code block if the
condition is true. The do control structure always executes its code block once, and then loops
again if the closing while test is true.

<?php
$result = $stmt->execute();

if (!$result) {
 print "DEBUG: Statement failed: {$stmt->errorInfo();}\n";
}

while ($row = $stmt->fetch()) {
 print "Name: {$row['NAME']}\n";
}
?>

for

The for loop is very similar to C's for control structure. for syntax contains three separate
expressions:

1. the first is executed only once, at the beginning of the for loop -- this is typically used to
initialize a local variable

2. the second is evaluated before every iteration of the loop, and which terminates the for
control structure if the value is FALSE

3. the third is evaluated at the end of every iteration of the loop, and is typically used to
increment or decrement the local variable

foreach

The foreach control structure iterates over every element of an array or object that
implements an iterator interface. This is an extremely handy way of handling dynamic data in
your application; for example, if your data structure changes and you need to print every column
of every row that is returned, you could use the following syntax:

<?php
$row = $stmt->fetch(PDO_FETCH_ASSOC);
foreach ($row as $key => $value) {
 print "Column name: [$key]. Column value: [$value]\n";
}
?>

Resources

• PDO documentation: http://www.php.net/PDO

• PHP Web site: http://www.php.net

• PHP Cheat Sheet: http://www.ilovejackdaniels.com/php/php-cheat-sheet/

• PHP Extension and Application Repository (PEAR): http://pear.php.net

• PHP Extension Community Library (PECL): http://pecl.php.net

• Zend Core for IBM: http://www.ibm.com/software/data/info/zendcore/

