
Apache Derby: Introduction

Deep Dive with Apache Derby: Perl, PHP, and Python

OSCON

August 2, 2005

Dan Scott

dan.scott@acm.org / dan.scott@ca.ibm.com

Objectives

In this section of the tutorial, you will learn how to:

1. Set up and administer Apache Derby as a database server.

2. Connect to the Apache Derby Network Server.

3. Create a database that introduces a few of Apache Derby's features.

4. Enable some security features for our network environment.

Quick facts

A relational database implemented in Java with a 6 megabyte footprint, supporting many
advanced features:

• stored procedures, triggers, user-defined functions

• transactions, views

• relational constraints, row-level locking

• database encryption

• database, LDAP, or user-defined authentication

IBM contributed the IBM Cloudscape source code to Apache under the Apache Software
License 2.0 in September 2004, resulting in the first release 10.0.0.1. The Apache Derby project
is currently preparing for the 10.1 release. The project is hosted at
http://incubator.apache.org/derby/.

Setting up and administering Apache Derby as a database server

1. Starting Apache Derby as a network server

Apache Derby depends upon a Java Runtime Environment (JRE) and its behavior depends on
having your environment variables set up correctly.

1. Open a new terminal window and extract the Apache Derby tarball:

bash$ tar xzf incubating-derby-snapshot-10.1.tar.gz
2. Extract the IBM JRE tarball:

bash$ tar xzf IBM-JRE-142.tar.gz
3. Change directories to derby/frameworks/NetworkServer/bin/:

bash$ cd derby/frameworks/NetworkServer/bin
4. Set up the network server environment variables:

bash$. setNetworkServerCP.ksh
5. Start the network server:

bash$./startNetworkServerCP.ksh
Leave this terminal window open so that we can watch the connection requests as we develop
our applications.

2. Connecting to and creating an Apache Derby database

This task currently requires you to connect to the database server using a JDBC connection, as
the command to create a new database is issued by a JDBC connection property (interestingly
enough). We will use the ij "interactive JDBC" tool to make the connection and issue the create
database request. ij is a useful but rather rough command line environment for administering
Apache Derby. After creating the database, the rest of our interactions with Apache Derby will
be through Perl, PHP, and Python applications.

1. Open a new terminal window and change directories to
derby/frameworks/NetworkServer/bin/:

bash$ cd derby/frameworks/NetworkServer/bin
2. Set up the network client environment variables:

bash$. setNetworkClientCP.ksh
3. Start the ij interactive JDBC tool:

bash$./ij.ksh
4. Issue your connection request using the create=true; connection attribute to force Apache

Derby to create the database MYDB if it does not already exist:

ij> connect 'jdbc:derby://localhost:1527/MYDB;create=true';
ij> disconnect;
ij> exit;

5. List the contents of the directory to ensure that a new subdirectory named MYDB has been
created.

If you want to create a copy of the empty database, you can simply shut down the Apache Derby
Network Server and copy the entire MYDB directory.

3. Creating the database tables

Our restaurant menu system will initially rely on a database containing three tables:

• FOOD -- stores the names and descriptions of individual food items

• PRICES -- stores the prices of food items

• PICTURES -- stores pictures of food items

Here are the SQL statements for creating the required tables:

CREATE TABLE menu.food (id INTEGER GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
name VARCHAR(128), description VARCHAR(1024));

CREATE TABLE menu.prices (id INTEGER, price DECIMAL(5,2), CONSTRAINT
prices_fk FOREIGN KEY (id) REFERENCES menu.food(id));

CREATE TABLE menu.pictures (id INTEGER, picture BLOB(256K), CONSTRAINT
pictures_fk FOREIGN KEY (id) REFERENCES menu.food(id));

Create the tables using the ij utility. You can enter the statements individually, or you can create
a text file that contains the SQL statements and use the RUN command to automatically execute
all of the statements in the indicated text file.

Notice the features demonstrated by these three simple tables:

• schemas: the 'menu' part of menu.food is a schema qualifier. By default, new SQL objects are
created in the schema of the user ID you used to connect to Apache Derby. For applications
that support connections from multiple users, using an explicit schema for your SQL objects
is strongly recommended.

• generated columns: the GENERATED ALWAYS AS IDENTITY clause automatically
inserts the next integer value for the indicated column when you insert a new row into the
table.

• relational constraints: the primary and foreign keys enforce referential integrity between
different tables. If the row containing a primary key value is deleted, the default action is to
delete the corresponding rows in any tables that defined a foreign key referencing the primary
table.

4. Securing the Apache Derby Network Server

The Apache Derby Network Server is, in its default configuration, arguably rather secure: it only
accepts connections from localhost. While that is useful for development purposes, most
production database servers need to accept connections from other hosts on the network. Once
your Apache Derby Network Server is ready to accept connections from other hosts, you need to
secure your database by adding authenticated users and turning on authentication.

4a. Enabling connections from other hosts

By default, Apache Derby only allows connections from localhost. Connections from other
hosts are rejected. The list of hosts is set when you start the Apache Derby Network Server, so to
change the setting you must restart the Network Server.

The startNetworkServerCP.ksh script offers a number of ways to specify the list of hosts from
which connections will be accepted; the easiest way is to set the DERBY_SERVER_HOST
environment variable to a comma-delimited set of hostnames or IP addresses from which you
want to accept connections. To accept connections from any host on the network, pass 0.0.0.0.

To set this property permanently, create an INI-style file called service.properties in the
NetworkServer directory and set the derby.drda.host property.

Example:

-- accept connections from every host on the network
bash$ export DERBY_SERVER_HOST=localhost,incubator.apache.org,9.26.169.128
bash$./stopNetworkServer.ksh
bash$./startNetworkServer.ksh

4b. Adding built-in database users

By default, user authentication is not enabled, so Apache Derby accepts network connections for
any combination of username and password you provide. This is not secure for a production
environment, of course, so we will use Apache Derby's support for built-in database users to add
an authentication requirement to our Apache Derby Network Server. Network connections
through the DB2 client are automatically encrypted using the IBM Java Cryptographic Extension
(JCE) on the network server side.

Built-in users are stored as database properties, so to add one or more built-in users for a given
database we can call the SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY stored

procedure. Note that these users have full INSERT/UPDATE/DELETE privileges on the entire
database; Apache Derby does not provide a lower level of granularity for granting and revoking
privileges on tables or views.

Example:

-- add a built-in user named 'neil' with the password 'diamond'
ij> CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY('derby.user.neil', 'diamond');

4c. Enabling built-in authentication

Apache Derby supports three different kinds of authentication: built-in users, LDAP, and custom
authentication. We are using built-in authentication as it is the easiest to demonstrate.
Authentication is a database property, so to turn it on you set the
derby.authentication.provider to 'BUILTIN' and the
derby.connection.requireAuthentication property to 'true'. Any subsequent connections to the
database will require a correct username and password to connect successfully.

Note: if you turn authentication on and shut down the Apache Derby Network Server before
defining any users, you will not be able to connect to the database so that you can define users.
It's best not to get yourself into this situation, but if you do, you can define a system-wide user in
the derby.properties file and use that user to correct the problem.

Example:

-- set authentication type to built-in
ij> CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
('derby.authentication.provider', 'BUILTIN');
-- turn on authentication
ij> CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY
('derby.connection.requireAuthentication', 'true');

4d. Debugging information

The Apache Derby network server logs interesting debug information in a file called
derby.log. Display the contents of that file in a text editor, and you should see the startup
information, connection attempts, and any Java exceptions that were thrown by Apache Derby.

Administration: SQL interface

Apache Derby is very programmer-friendly, in that the majority of administrative tasks are
performed by calling stored procedures or invoking SQL functions. This design approach makes
it easy to write scripts in your favourite language to administer Apache Derby. Following is a
complete list of the administrative stored procedures and functions.

Backing up a database

Backup support is provided by three stored procedures.

SYSCS_UTIL.SYSCS_FREEZE_DATABASE():

Freezes all database operations so a backup at the level of the operating system can
occur.

SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE():

Brings database back to full operation after a backup at the level of the operating system.

SYSCS_UTIL.SYSCS_BACKUP_DATABASE(IN backupDir VARCHAR(32762)):

Backs up the database to the directory specified by backupDir. Reads against Apache
Derby can continue, but writes are blocked until the backup finishes.

Restoring a database is a matter of either connecting to the backed-up database, or stopping the
current network server and renaming the original and backup directories.

Tuning performance

Performance diagnostics are provided by one function, and two stored procedures.

SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS():

Returns a VARCHAR(32768) representing the execution plan for a prepared statement.

SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(IN enable SMALLINT):

A positive integer value for enable turns the capturing of runtime statistics on so that you
can return the execution plan by invoking the
SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS() function.

SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING(IN enable SMALLINT):

A positive integer value for enable adds precise timings for each step of the execution
plan. Has no effect if runtime statistics are not being collected.

Example:

-- turn on statistics collection
CALL SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(1);
-- turn on statistics timing
CALL SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING(1);
-- retrieve the
VALUES SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS();

Moving data

Importing and exporting data is handled by four stored procedures:

SYSCS_UTIL.SYSCS_EXPORT_TABLE(IN schemaName VARCHAR(128), IN tableName
VARCHAR(128), IN filename VARCHAR(32672), IN columnDelimiter CHAR(1), IN
characterDelimiter CHAR(1), IN codeset VARCHAR(128)):

Exports the specified table to the specified filename. If columnDelimiter is NULL, the
default value is a comma (,). If characterDelimiter is NULL, the default value is a
double quotation mark ("). If codeset is NULL, the codeset of the running JVM is used.

SYSCS_UTIL.SYSCS_EXPORT_QUERY(IN selectStatement VARCHAR(128), IN filename
VARCHAR(32672), IN columnDelimiter CHAR(1), IN characterDelimiter CHAR(1), IN
codeset VARCHAR(128)):

Exports the results of the specified query to the specified filename. If columnDelimiter
is NULL, the default value is a comma (,). If characterDelimiter is NULL, the default
value is a double quotation mark ("). If codeset is NULL, the codeset of the running JVM
is used.

SYSCS_UTIL.SYSCS_IMPORT_TABLE(IN schemaName VARCHAR(128), IN tableName
VARCHAR(128), IN filename VARCHAR(32672), IN columnDelimiter CHAR(1), IN
characterDelimiter CHAR(1), IN codeset VARCHAR(128), IN replace SMALLINT):

Imports the data from the specified file into the specified table.If columnDelimiter is
NULL, the default value is a comma (,). If characterDelimiter is NULL, the default
value is a double quotation mark ("). If codeset is NULL, the codeset of the running JVM
is used. If the value of replace is a non-zero integer, all of the data in the table will be
deleted and replaced by the contents of the file.

SYSCS_UTIL.SYSCS_IMPORT_DATA(IN schemaName VARCHAR(128), IN tableName
VARCHAR(128), IN insertColumns VARCHAR(32672), IN columnIndexes VARCHAR
(32672), IN filename VARCHAR(32672), IN columnDelimiter CHAR(1), IN characterDelimiter
CHAR(1), IN codeset VARCHAR(128), IN replace SMALLINT):

Imports the data from the specified file into a subset of
columns in the specified table.You must specify either a
comma-delimited set of column names with insertColumns to
specify the columns by name, or a comma-delimited set of
column numbers with columnIndexes to specify the columns by
number. If columnDelimiter is NULL, the default value is a
comma (,). If characterDelimiter is NULL, the default value
is a double quotation mark ("). If codeset is NULL, the
codeset of the running JVM is used. If the value of replace
is a non-zero integer, all of the data in the table will be
deleted and replaced by the contents of the file.

Setting and getting database properties

SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY(IN propertyName VARCHAR(128)):

Returns the current value of the specified database property.

SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY(IN key VARCHAR(128), IN value
VARCHAR(32672)):

Sets the database property key to the specified value.

Example:

-- log all connections to the database server
CALL SYSCS_UTIL.SYSCS_SET_DATABASE_PROPERTY('derby.drda.logConnections',
'true');
-- check the value of the property to ensure the change was made
VALUES SYSCS_UTIL.SYSCS_GET_DATABASE_PROPERTY('derby.drda.logConnections');

Database health

SYSCS_UTIL.SYSCS_CHECK_TABLE((IN schemaName VARCHAR(128), IN tableName
VARCHAR(128))):

Returns an integer value of 1 if the specified table is consistent.

SYSCS_UTIL.SYSCS_CHECKPOINT_DATABASE():

Flushes all cached data to disk -- the equivalent of calling sync on Linux / UNIX.

SYSCS_UTIL.SYSCS_COMPRESS_TABLE(IN schemaName VARCHAR(128), IN
tableName VARCHAR(128), IN sequential SMALLINT):

Returns unused space allocated for the specified table to the operating systems -- usually
only a problem if many rows have been deleted from that table. The sequential
argument, if set to a positive integer value, causes Apache Derby to use a slower but less
memory-intensive method of reclaiming the unused space.

SYSCS_UTIL.SYSCS_INPLACE_COMPRESS_TABLE(IN schemaName VARCHAR(128),
IN tableName VARCHAR(128), IN purgeRows SMALLINT, IN defragmentRows SMALLINT,
IN truncateEnd SMALLINT):

Compresses the data within the existing table and index files, rather than creating new
files. Passing a positive integer value for purgeRows and defragmentRows forces a scan
of every page in the table; truncateEnd is used in conjunction with defragmentRows to
reclaim the defragmented space at the end of the table.

Reference information

• Online documentation: http://incubator.apache.org/derby/manuals/index.html

• Mailing lists: http://incubator.apache.org/derby/derby_mail.html

• JIRA issue tracker: http://incubator.apache.org/derby/DerbyBugGuidelines.html

