
Python exercises

Deep Dive with Apache Derby: Perl, PHP, and Python

OSCON

August 2, 2005

Dan Scott

dan.scott@acm.org / dan.scott@ca.ibm.com

Objectives:

• Introduce the Python DB-API 2.0

• Set up support for the pyDB2 module

• Create a Web page that pulls data from Apache Derby

• Create a Web page that inserts data into Apache Derby

Quick facts

Python was created by Guido van Rossum as an object-oriented scripting language. (In)famous
for its use of indentation, rather than braces, to define code blocks. Some of the best-known
Python projects are BitTorrent peer-to-peer, SpamBayes spam filtering, and MailMan mailing
list manager.

Command line interface

Python includes a command line interface that is useful for testing code or language constructs
on the fly. To start the command line interface, simply invoke the python executable. You will
be greeted by a >>> prompt, where you can begin typing your Python statements. To close the
command line, press CTRL-Z, followed by return.

1. Introducing the Python DB-API 2.0

The standard database interface for Python applications is the Python DB-API 2.0. Two
implementations offer access to Apache Derby:

• pyDB2, written by Man-Yong Lee, is an LGPL module

• mxODBC, written by Marc-Andre Lemburg, is a commercial module

This section focuses on the pyDB2 module as it is truly free and offers most of the features
defined by the Python DB-API 2.0.

2. Building and configuring the pyDB2 module

Prerequisites:

• Installed DB2 Runtime Client with application development support

• Installed Python 2.3.x or 2.4.x

• (Linux): Download pyDB2 1.1 source from
ftp://people.linuxkorea.co.kr/pub/DB2/src/PyDB2-devel-v1.1.tar.gz

• (Linux): Application development tools and libraries such as python-devel, gcc, autoconf,
automake, bison, and flex.

Configuring and compiling

On Windows, a binary module offering pyDB2 support is available from
ftp://people.linuxkorea.co.kr/pub/DB2/win32/.

On Linux, you can compile pyDB2 support against the DB2 Runtime Client libraries by
following these steps:

bash$ tar xzf PyDB2-devel-v1.1.tar.gz
bash$ cd v1.1
bash$ python setup.py build
bash$ su -c 'python setup.py install'

This compiles pyDB2 and installs the module in the Python module library.

Testing the installation

Test that you have successfully built and installed pyDB2 by issuing the following commands:

bash$ python
>>> import DB2
>>> print DB2
<module 'DB2' from 'DB2.py'>
>>> print DB2.connect
DB2.Connection

Cataloging the database

Currently, pyDB2 only supports cataloged connections. These are connections that use the DB2
Runtime Clients directory of database servers (nodes) and databases to avoid having to explicitly
pass the hostname, port number, and protocol for the database to which you want to connect.

To catalog the database, open a command line and issue the following commands:

bash$ db2 catalog tcpip node DERBY remote LOCALHOST server 1527
bash$ db2 catalog database MYDB at node derby authentication server

The authentication server option is required, but introduces an additional requirement of running
Apache Derby under a Java Runtime Environment that includes the IBM version of the Java
Cryptographic Extensions (JCE) to support the encryption that this option uses.

3. Displaying data in a Web page

We'll start by creating a Python script that simply creates a connection to your Apache Derby
database and either confirms the connection, or explains why the connection failed.

3a: Creating a function library

Create a new script named menu.py containing the following code:

#!/usr/bin/python
import DB2

def connect(database='MYDB', user='lynn', password='5tuff'):
 dbh = None
 dbh = DB2.connect(database, user, password)
 return dbh

3b: Connecting to the database through pyDB2

Create a new script named connect.py containing the following code:

#!/usr/bin/python
import sys
import DB2

import the functions in menu.py within this script
import menu

Create the connection with default parameter values
try:
 conn = menu.connect()

except Exception, e:
 sys.exit("Failed to connect: %s" % e)

Here is where we would do real work; just print connection status
print "Connection succeeded!"

Clean up the connection
conn.close()

Test the script from the command line to ensure the connection succeeds:

bash$ python connect.py

We will use the connect.py script as the basis for the rest of our PHP scripts by fleshing it out
with real PHP code and HTML output.

3c. Retrieving data from Apache Derby

So far we have been working strictly with the Connection object defined in the Python DB-API
2.0 specification. To interact with SQL objects, however, you need to create a Cursor object. The
Cursor object issues all SQL statements and provides the interface for retrieving all results from
the database.

Python comes with a base module named cgi that implements the functionality required by the
Common Gateway Interface specification. We will use this in our script to retrieve the values of
the form input fields, then build our SQL statement and retrieve the results.

Create a new script named search.py containing the following code, copying the contents of
the search form search.html you created during the PHP exercises into the header()
method . Modify the form to call search.py:

#!/usr/bin/python
import sys
import cgi
import menu
import re

def header(title):
 header = "Content-type: text/html\n\n"
 header = header + """<html>
 <head><title>""" + title + """</title></head>

 <body><h1>""" + title + '</h1>'

 # add modified search code here
 header = header + """<form action='search.py' method='POST'>
 <label for='sinput'>Please enter the search string:</label>
 <input type='text' name='search' id='sinput' size='30'/>

 <input type='submit'/><input type='reset'/>
 </form>
 """

 return header

def footer():
 return "</body></html>"

if __name__ == '__main__':
 search = None
 form = cgi.FieldStorage()

 if (form.has_key('search')):
 alphabet = re.compile('^([^\W_]+)$')
 matches = alphabet.search(form['search'])
 if (matches):
 search = form['search']

 if (not search):
 print header('Search for food')
 print footer()
 sys.exit()

 print header('Searching for food...')
 try:
 conn = menu.connect()

 # create a Cursor object
 curs = conn.cursor()

 sql = """SELECT name, description
 FROM menu.food
 WHERE name LIKE ?"""

 # issue the SQL statement
 curs.execute(sql, search)

 # fetch the first row from the result set
 result = curs.fetchone()

 if result:
 while result:
 print("<p>Name: %s
Description: %s</p>\n") % (result[0], result
[1])
 result = curs.fetchone()
 else:
 print "Failed to find any search results for that string."

 except Exception, e:
 print "SQL failure: %s" % e

 print footer()

Load search.py in your Web browser and ensure that it returns the expected results for known
searches. Test your filtering code to ensure it does not allow unwanted characters.

Improve the error-handling to issue an error message when illegal characters have been passed to
the search script without introducing a new vulnerability.

4. Demonstrating the use of SQL triggers

Apache Derby supports triggers -- SQL objects that defines a set of actions to be performed
when specific delete, update, or insert events occur in a specified table in the database. In the
following example, we create a new table menu.counter that contains a single row to track
the number of items within the menu.food table.

CREATE TABLE menu.counter (id INTEGER, num INTEGER);
INSERT INTO menu.counter(id, num) values (1, 1);
CREATE TRIGGER incrementCount
 AFTER INSERT
 ON menu.food FOR EACH ROW MODE DB2SQL
 UPDATE menu.counter SET num = num + 1 WHERE id = 1;
CREATE TRIGGER decrementCount
 AFTER DELETE
 ON menu.food FOR EACH ROW MODE DB2SQL
 UPDATE menu.counter SET num = num - 1 WHERE id = 1;

4a. Testing the SQL triggers

Issue a number of INSERT and DELETE statements against the menu.food table, then check
the value of the menu.counter table. If you issue a single INSERT statement that inserts
multiple rows, is the menu.counter table incremented appropriately?

4b. Inserting and deleting data

Copy and modify the search.py script so that it enables a user to add or remove food items
from the online menu. Notice that none of the modifications to the data actually stay in the
database -- this is because Python automatically sets the database to be in transaction mode, and
automatically rolls back the transaction if the application does not explicitly call the commit()
or rollback() methods on the Connection object.

Add an explicit commit() call to commit the transaction.

Python Syntax

Variables

Variables in Python have no special signifier characters, and (like Perl and PHP) are dynamically
typed. The basic data types Python supports are:

Boolean

A simple true or false value, where the initial letter must be capitalized.

>>> x = True
>>> y = False

Numeric (integer, long integer, float, and complex)

>>> integer = 6
>>> longinteger = 20L
>>> float_ = 3.5
>>> complex = 10.6 + 9.2J
>>> float = 3.5

String

>>> string = """This is a multiline
string, it keeps on going until you hit the closing
triple double quotation marks"""
>>> ipolate = "An integer: %d - and a string: %s" % (integer, "boo")
>>> print ipolate
An integer: 6 - and a string: boo

Sequence (tuples and lists)

A equence is a 0-indexed set of objects that you create by assigning a comma-delimited
collection of elements to a variable. Tuples are immutable (cannot be changed), while lists are
mutable.

Yes, they are very similar. The difference is that, to create a tuple, you can enclose the collection
of elements in parentheses ().

To create a list, you must enclose the collection of elements in braces [].

>>> # Tuple -- immutable sequence
>>> tuple = (1, 2, 4, 3)
>>> print tuple
(1, 2, 4, 3)
>>> print tuple[0]
1
>>> print len(tuple)
4
>>> # List -- mutable sequences
>>> list = [4, 3, 2, 1]
>>> print list
[4, 3, 2, 1]
>>> print list[0]
4
>>> list[0] = 66
>>> print list

[66, 3, 2, 1]

Dictionary

A dictionary represents a set of key / value pairs -- much like a sequence object, except with
named keys instead of simple integer positions. In a dictionary, the keys are seprated from their
values by a colon :, each key/value pair is delimited by a comma, and the whole set of key / value
pairs is enclosed in curly braces {}.

>>> cat = {'hair' : 'black', 'name' : 'Spook', 'weight' : 3.2}
>>> print cat['hair']
black

Defining functions and classes

Functions

You can define your own function by using the def keyword to identify the name of the function,
a function signature in parentheses, a colon, and finally your indented function body.

>>> def tagit (tagname, text):
html = "<%s>%s</%s>" % (tagname, text, tagname)
return html

>>> print tagit("strong", "My name is Susan.")
My name is Susan.
>>>

Classes

You can define your own class by declaring the class name using the class keyword, followed by
an optional list of classes from which your new class will inherit, a colon, and your indented
class definition.

Define class methods in the same way that you define a function, except pass the self keyword
as the first parameter to each method to represent the instance of the object. To define a
constructor for the class, define a class method named __init__ that sets the initial values for
the instance variables.

Within the class definition, refer to instance variables using the self. prefix.

>>> class cat:
def __init__(self, hair, name, weight):

self.hair = hair
self.name = name
self.weight = weight

def purr(self, volume):
return volume * self.weight

>>> spook = cat('black', 'Spook', 3.2)
>>> print spook.purr(3)
9.6

Operators

while loops

A while loop is a control structure that loops while the specified condition is true:

>>> x = 0
>>> while x < 5:

x = x + 1
print x,

1 2 3 4 5

Notice that the numbers are all printed on the same line. Can you guess why?

if / elif / else

Standard condition tests, with the else keyword providing a default action if no other test
succeeds. Only the if test is required.

>>> if spook.hair == 'white':
print "Winter cat"

elif spook.hair == 'black':
print "Night cat"

else:
print "Calico cat"

Night cat

for iterators

The for operator iterates over each element of a sequence or other object that implements an
iterator interface.

>>> cats = 'Spook', 'Mitten', 'Snowball'
>>> for name in cats:

print name,

Spook Mitten Snowball

Resources

• Python DB-API 2.0 specification: http://www.python.org/peps/pep-0249.html

• Python Web site: http://python.org

