
Perl exercises

Deep Dive with Apache Derby: Perl, PHP, and Python

OSCON

August 2, 2005

Dan Scott

dan.scott@acm.org / dan.scott@ca.ibm.com

Copyright 2005. All rights reserved.

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 2.0 Canada
license (http://creativecommons.org/licenses/by-nc-sa/2.0/ca/).

Objectives:
• Introduce the Perl Database Interface (DBI) specification

• Set up support for the Perl DBI and DBD::DB2 modules

• Connect to the Apache Derby database

• Create a Web page that pulls data from Apache Derby

• Create a Web page that inserts data into Apache Derby

• Create a script to insert binary large object (BLOB) data into Apache Derby

1. Introducing the Perl DBI specification

The standard database interface for Perl applications is the Perl DBI, currently at version 1.48,
largely designed, developed, and maintained by Tim Bunce since 1994. The architecture for the
Perl DBI defines the common DBI module, with database driver (DBD) modules providing
connectivity for specific databases, as well as flat files, XML, and comma-separated value
(CSV) files. With the approach of Perl 6, discussion on the dbi-dev mailing list is currently
underway about the future of DBI.

To connect to Apache Derby, you should use the DBD::DB2 module. DBD::DB2 is written and
maintained by IBM, and the source is freely available from the Comprehensive Perl Archive
Network (CPAN).

2. Building and configuring the Perl DBI and DBD::DB2 modules

Prerequisites

• Installed DB2 Runtime Client with application development support

• Installed Perl 5.8.x

• (Linux): Application development tools and libraries such as perl-devel, gcc, autoconf,
automake, bison, and flex.

Windows

On Windows, if you are using the ActiveState Perl distribution, you can install the Perl DBI and
the DBD::DB2 modules by issuing the following command:

C:\> ppm install http://ftp.esoftmatic.com/outgoing/DBI/5.8.4/DBI.ppd
C:\> ppm install http://ftp.esoftmatic.com/outgoing/DBI/5.8.4/DBD-DB2.ppd

Linux

On Linux, you can install the Perl DBI and the DBD::DB2 modules by issuing the following
commands:

bash$ export DB2_HOME=/home/db2inst1/sqllib/
bash$ perl -MCPAN -e 'install DBI'
bash$ perl -MCPAN -e 'install DBD-DB2'

3. Connecting to an Apache Derby database

In this exercise, you will create a Perl script named connect.pl that connects to the Apache
Derby database named MYDB runnng on host localhost on port number 1527.

Your Perl script should begin with the following lines:

#!/usr/bin/perl
use strict;
use warnings;

The first line tells the Linux shell which interpreter should be used to process the rest of the
script. The second line enforces good programming practices, like declaring lexical variables
with my. The third line helps prevent you from committing questionable programming practices,
like using a non-numeric value as one of the operands of the + operator.

You are using the Database Interface (DBI) module for all of your database access, so you must
also include the following line:

use DBI;

For the purposes of simplicity, let's assign the database, user name, password, hostname, and
port number values to local variables that we can use to create the database connection string:

my $database = 'MYDB';
my $user = 'lynn';
my $password = '5tuff';
my $hostname = 'localhost';
my $port = 1527;

Now we can build the complete database connection string for an uncataloged database
connection (ensure that there are no spaces in this string and that it all appears on a single line):

my $DSN = "DRIVER={IBM DB2 ODBC DRIVER};
DATABASE=$database;HOSTNAME=$hostname;PORT=$port;PROTOCOL=TCPIP;";

To create a connection to a database using the Perl DBI and the DBD::DB2 driver, invoke the
DBI->connect() method.

my $conn = DBI->connect("dbi:DB2:$DSN", $user, $password,
 { AutoCommit => 1 });

Check to see if the connection was successful
if (!$conn) {
 print "Connection failed!\n";
}
else {
 print "Connection succeeded.\n";
 # Explicitly close our connection
 $conn->disconnect();
}

Now test the connection to your database.

bash$ perl connect.pl

Assuming that the Apache Derby Network Server is still running, you should receive
confirmation that your Perl script has successfully connected to the database.

4. Displaying data in a Web page

Most Web applications either directly use the CGI module, or use a module that builds on top of
CGI. In this section, we will use the CGI module to fetch GET and POST requests and set
cookie values.

Copy the contents of connect.pl into a new script named search.pl.

Add use CGI; to the list of Perl modules to be imported.

4a. Creating a standard connect() function

Refactor the connection code into a Perl function that returns the connection object. One
possible solution that hardcodes the connection information into the script itself follows:

sub db_connect() {
 my $database = 'MYDB';
 my $user = 'lynn';
 my $password = '5tuff';
 my $hostname = 'localhost';
 my $port = 1527;

 # Create the connection string for an uncataloged connection
 my $DSN = "DRIVER={IBM DB2 ODBC DRIVER};
DATABASE=$database;HOSTNAME=$hostname;PORT=$port;PROTOCOL=TCPIP;";

 my $conn = DBI->connect("dbi:DB2:$DSN", $user, $password,
 { AutoCommit => 1 });
 return $conn;
}

4b. Creating standard header() and footer() functions

Create a header() function that prints the requested title and displays the search form from
the PHP exercises. Modify the header to call /cgi-bin/search.pl:

sub header {
 my ($title) = @_;
 my $header = "<html>
 <head><title>$title</title></head>
 <body><h1>$title</h1>";

 # add modified search code here

 return $header;
}

sub footer {
 return '</body></html>';
}

4c. Retrieving CGI POST and GET variables

The CGI module provides an object-oriented interface to generating HTML pages, accessing
CGI variables, and manipulating cookies. Any GET and POST variables passed to the page are
accessible through the param() method of the instantiated CGI object.

Instantiate a new CGI object
my $query = new CGI;

Print the HTTP header
print $query->header();

Print our HTML header with search form
print header('Search for a menu item');

Declare the $search variable in the global scope
my $search;

Ensure the requested CGI parameter actually exists
if ($query->param('search')) {
 # Whitelist filter the input string to prevent naughty input
 ($search) = $query->param('search') =~ m/^([^\W_]+)$/;
}

if (!$search) {
 print "Please enter an alphanumeric search string.";
 exit;
}

4d. Issuing an SQL statement

To issue an SQL statement using the Perl DBI, you can either issue the statement directly using
the $dbh->do() method, or, if the statement includes parameters or will be issued multiple
times, you can $dbh->prepare() the statement and then $sth->execute() the resulting
statement handle object.

Connect to the database
my $conn = db_connect();

Declare the SELECT statement
my $sql = q{SELECT name, description
 FROM menu.food
 WHERE name LIKE ?};

Prepare the SELECT statement
Apache Derby will return an error if the prepare fails.
my $sth = $conn->prepare($sql);

Pass in the value for the query placeholder
my $result = $sth->execute($search);

4e. Retrieving rows from an SQL query

Once you have executed an SQL statement that returns a result set, such as a SELECT statement,
the Perl DBI gives you many different methods for retrieving the rows. The fastest method,
however, is to bind the returned columns to Perl variables and iterate through the rows as
demonstrated below.

Declare the variables to which the columns will be bound
my ($name, $description);

Bind the variables to the returned columns
$result = $sth->bind_columns(\$name, \$description);

Loop through each row
while ($sth->fetch) {
 print "<p>Name: $name
Description: $description</p>\n";
}

5. Inserting data into Apache Derby

5a. Creating a Perl module

Rather than recopying our Perl subroutines into every new script, let's factor the subroutines into
a separate Perl module that we can reuse for the rest of our scripts. Create a new file called
mydb.pm with the following code:

#!/usr/bin/perl
package mydb;
use strict;
use warnings;
use DBI;
use CGI;

BEGIN {
 use Exporter;
 our ($VERSION, @ISA, @EXPORT, @EXPORT_OK);
 $VERSION = 1.00;
 @ISA = qw{Exporter};
 # Export these functions from our module upon request
 @EXPORT_OK = qw {
 db_connect
 footer
 header
 };
}

our @EXPORT_OK;

Append your definitions for the db_connect(), header(), and footer() functions to
this code.

5a. Inserting plain old data types

The Perl DBI automatically converts most plain old data types from Perl into their target data
type in Apache Derby by treating input variables as VARCHAR data types and allowing Apache

Derby to convert the data accordingly. So, building on your experiences with creating SQL
statements to inserting data in PHP and Python, and combining that with your knowledge of the
Perl CGI module's forms-handling, build a Web form that lets us add new menu items and their
corresponding prices to the database.

To re-use the db_connect(), header(), and footer() functions from your custom
Perl module in your new script, create a new script called insert_data.pl beginning with
the following lines:

#!/usr/bin/perl
use strict;
use warnings;
use DBI;
use CGI;
use mydb qw/ db_connect header footer /;

5b. Using transactions to commit or roll back a unit of work

So far, we have been connecting to Apache Derby and explicitly turning on AUTOCOMMIT as
part of the DBI->connect() method parameters array. However, the Perl DBI also enables you to
begin a new transaction and commit or roll back the unit of work using the begin_work(),
commit(), and rollback() Connection methods.

Perl's version of exception handling executes all of the statements you want to try in an eval
{}; block, then checks the $@ special variable to see if any errors were raised in the block. To
raise errors from DBI connection objects, set the RaiseError attribute of the connection handle:

$conn->{RaiseError} = 1;
Modify your insert script to perform the set of INSERT statements within a transaction, and roll
back all of the statements inside the transaction if just one of the statements fails.

5c. Inserting binary large object (BLOB) data types

Binary large objects (BLOBs) are chunks of binary data that, in Apache Derby, can be as large
as 2 gigabytes in size. BLOB columns can be used to store documents, multimedia files like
pictures or music, or other sets of binary data. While the performance of storing and retrieving
BLOBs from a database typically suffers in comparison to the same files served directly from a
filesystem, one of the primary advantages of storing BLOBs in the database is ensuring that your
backup and restore operations keep your BLOBs in sync with the rest of the data in your
database.

Create a new Perl script to insert a picture into your menu (at long last!). You can reuse the shell
of your previous Perl script.

my $conn = db_connect();

my $sql = q{
 INSERT INTO menu.pictures(id, picture)
 VALUES (?, ?)
};

Prepare the statement
my $stmt = $conn->prepare($sql);

Create a variable to hold the item ID
my $menu_number = 1;

Bind the ID as an input parameter
$stmt->bind_param(1, $menu_number);

Create a variable with the location of our BLOB file
my $menu_pic = '/home/lynn/burger.png';

Bind the BLOB as an input parameter, setting the db2_file attribute to true
$stmt->bind_param(2, $menu_pic, { db2_file => 1 });

Execute the statement
my $result = $stmt->execute();

Check the results of the statement and print success or failure message
if ($result) {
 print "Successfully inserted a picture into the menu.";
}
else {
 print "Failed with the following error: " . $conn->errstr;
}

To ensure that your BLOB was successfully inserted, use the LENGTH() scalar function to
check the size of the picture column in the menu.pictures table to ensure that it matches the size
of the file that you inserted into the database.

